Santidrián Tomillo, P. 2022 When population-advantageous primary sex ratios are female-biased: changing concepts to facilitate climate change management in sea turtles. Climatic Change 175, 15, doi: https://doi.org/10.1007/s10584-022-03470-4
Abstract: Sea turtles have temperature-dependent sex determination. Because females are produced at high temperatures, increasing global temperature may lead to population feminization. Primary sex ratios (PSR) of sea turtle hatchlings are naturally female-biased, but this translates into a more balanced operational sex ratio because male turtles reproduce more often than females. As a consequence, a balanced PSR and the temperature that produces it (pivotal temperature) are of limited use to guide climate mitigation management because an equal PSR may be demographically suboptimal.
Photo from wikipedia.org |
Here, I define population-advantageous primary sex ratios (PA-PSR) as the PSR that will tend to be in equilibrium in a population and that will result in balanced operational sex ratios; I then estimate PA-PSR for different reproductive frequencies (years elapsed between reproductive seasons) of adult female and male turtles. I also define population equilibrium temperature (PET) as the temperature that would result in the equilibrium PSR of hatchlings (i.e., PA-PSR). These concepts may help assess the influence of rising temperatures on populations, as they can better indicate if PSRs depart from those at equilibrium. I compared PA-PSR and beach PSR for two populations of sea turtles for which male and female remigration intervals were known and found that a mild or no feminization over the PA-PSR may be occurring. Because PSR varies inter-annually, and hatchlings coming from beaches of different thermal conditions could recruit to the same population, it is critical to estimate beach PSR at the right temporal and spatial scales. Climate mitigation strategies based on these concepts could provide better management guidance for conservation practitioners. Similar approaches could be considered for other female-biased species with temperature-dependent sex determination.